Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Snow and ice topography impact and are impacted by fluxes of mass, energy, and momentum in Arctic sea ice. We measured the topography on approximately a 0.5 km2drifting parcel of Arctic sea ice on 42 separate days from 18 October 2019 to 9 May 2020 via Terrestrial Laser Scanning (TLS). These data are aligned into an ice-fixed, lagrangian reference frame such that topographic changes (e.g., snow accumulation) can be observed for time periods of up to six months. Usingin-situmeasurements, we have validated the vertical accuracy of the alignment to ± 0.011 m. This data collection and processing workflow is the culmination of several prior measurement campaigns and may be generally applied for repeat TLS measurements on drifting sea ice. We present a description of the data, a software package written to process and align these data, and the philosophy of the data processing. These data can be used to investigate snow accumulation and redistribution, ice dynamics, surface roughness, and they can provide valuable context for co-located measurements.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            The microstructure of the uppermost portions of a melting Arctic sea ice cover has a disproportionately large influence on how incident sunlight is reflected and absorbed in the ice/ocean system. The surface scattering layer (SSL) effectively backscatters solar radiation and keeps the surface albedo of melting ice relatively high compared to ice with the SSL manually removed. Measurements of albedo provide information on how incoming shortwave radiation is partitioned by the SSL and have been pivotal to improving climate model parameterizations. However, the relationship between the physical and optical properties of the SSL is still poorly constrained. Until now, radiative transfer models have been the only way to infer the microstructure of the SSL. During the MOSAiC expedition of 2019–2020, we took samples and, for the first time, directly measured the microstructure of the SSL on bare sea ice using X-ray micro-computed tomography. We show that the SSL has a highly anisotropic, coarse, and porous structure, with a small optical diameter and density at the surface, increasing with depth. As the melting surface ablates, the SSL regenerates, maintaining some aspects of its microstructure throughout the melt season. We used the microstructure measurements with a radiative transfer model to improve our understanding of the relationship between physical properties and optical properties at 850 nm wavelength. When the microstructure is used as model input, we see a 10–15% overestimation of the reflectance at 850 nm. This comparison suggests that either a) spatial variability at the meter scale is important for the two in situ optical measurements and therefore a larger sample size is needed to represent the microstructure or b) future work should investigate either i) using a ray-tracing approach instead of explicitly solving the radiative transfer equation or ii) using a more appropriate radiative transfer model.more » « less
- 
            Abstract Snow plays an essential role in the Arctic as the interface between the sea ice and the atmosphere. Optical properties, thermal conductivity and mass distribution are critical to understanding the complex Arctic sea ice system’s energy balance and mass distribution. By conducting measurements from October 2019 to September 2020 on the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, we have produced a dataset capturing the year-long evolution of the physical properties of the snow and surface scattering layer, a highly porous surface layer on Arctic sea ice that evolves due to preferential melt at the ice grain boundaries. The dataset includes measurements of snow during MOSAiC. Measurements included profiles of depth, density, temperature, snow water equivalent, penetration resistance, stable water isotope, salinity and microcomputer tomography samples. Most snowpit sites were visited and measured weekly to capture the temporal evolution of the physical properties of snow. The compiled dataset includes 576 snowpits and describes snow conditions during the MOSAiC expedition.more » « less
- 
            The magnitude, spectral composition, and variability of the Arctic sea ice surface albedo are key to understanding and numerically simulating Earth’s shortwave energy budget. Spectral and broadband albedos of Arctic sea ice were spatially and temporally sampled by on-ice observers along individual survey lines throughout the sunlit season (April–September, 2020) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The seasonal evolution of albedo for the MOSAiC year was constructed from spatially averaged broadband albedo values for each line. Specific locations were identified as representative of individual ice surface types, including accumulated dry snow, melting snow, bare and melting ice, melting and refreezing ponded ice, and sediment-laden ice. The area-averaged seasonal progression of total albedo recorded during MOSAiC showed remarkable similarity to that recorded 22 years prior on multiyear sea ice during the Surface Heat Budget of the Arctic Ocean (SHEBA) expedition. In accord with these and other previous field efforts, the spectral albedo of relatively thick, snow-free, melting sea ice shows invariance across location, decade, and ice type. In particular, the albedo of snow-free, melting seasonal ice was indistinguishable from that of snow-free, melting second-year ice, suggesting that the highly scattering surface layer that forms on sea ice during the summer is robust and stabilizing. In contrast, the albedo of ponded ice was observed to be highly variable at visible wavelengths. Notable temporal changes in albedo were documented during melt and freeze onset, formation and deepening of melt ponds, and during melt evolution of sediment-laden ice. While model simulations show considerable agreement with the observed seasonal albedo progression, disparities suggest the need to improve how the albedo of both ponded ice and thin, melting ice are simulated.more » « less
- 
            Abstract. Wind-driven redistribution of snow on sea ice alters itstopography and microstructure, yet the impact of these processes on radarsignatures is poorly understood. Here, we examine the effects of snowredistribution over Arctic sea ice on radar waveforms and backscattersignatures obtained from a surface-based, fully polarimetric Ka- and Ku-bandradar at incidence angles between 0∘ (nadir) and 50∘.Two wind events in November 2019 during the Multidisciplinary drifting Observatory forthe Study of Arctic Climate (MOSAiC) expedition are evaluated. During both events, changes in Ka- andKu-band radar waveforms and backscatter coefficients at nadir are observed,coincident with surface topography changes measured by a terrestrial laserscanner. At both frequencies, redistribution caused snow densification atthe surface and the uppermost layers, increasing the scattering at theair–snow interface at nadir and its prevalence as the dominant radar scattering surface. The waveform data also detected the presence of previousair–snow interfaces, buried beneath newly deposited snow. The additionalscattering from previous air–snow interfaces could therefore affect therange retrieved from Ka- and Ku-band satellite altimeters. With increasingincidence angles, the relative scattering contribution of the air–snowinterface decreases, and the snow–sea ice interface scattering increases.Relative to pre-wind event conditions, azimuthally averaged backscatter atnadir during the wind events increases by up to 8 dB (Ka-band) and 5 dB (Ku-band). Results show substantial backscatter variability within the scanarea at all incidence angles and polarizations, in response to increasingwind speed and changes in wind direction. Our results show that snowredistribution and wind compaction need to be accounted for to interpretairborne and satellite radar measurements of snow-covered sea ice.more » « less
- 
            Abstract. Arctic rain on snow (ROS) deposits liquid water onto existing snowpacks. Upon refreezing, this can form icy crusts at the surface or within the snowpack. By altering radar backscatter and microwave emissivity, ROS over sea ice can influence the accuracy of sea ice variables retrieved from satellite radar altimetry, scatterometers, and passive microwave radiometers. During the Arctic Ocean MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition, there was an unprecedented opportunity to observe a ROS event using in situ active and passive microwave instruments similar to those deployed on satellite platforms. During liquid water accumulation in the snowpack from rain and increased melt, there was a 4-fold decrease in radar energy returned at Ku- and Ka-bands. After the snowpack refroze and ice layers formed, this decrease was followed by a 6-fold increase in returned energy. Besides altering the radar backscatter, analysis of the returned waveforms shows the waveform shape changed in response to rain and refreezing. Microwave emissivity at 19 and 89 GHz increased with increasing liquid water content and decreased as the snowpack refroze, yet subsequent ice layers altered the polarization difference. Corresponding analysis of the CryoSat-2 waveform shape and backscatter as well as AMSR2 brightness temperatures further shows that the rain and refreeze were significant enough to impact satellite returns. Our analysis provides the first detailed in situ analysis of the impacts of ROS and subsequent refreezing on both active and passive microwave observations, providing important baseline knowledge for detecting ROS over sea ice and assessing their impacts on satellite-derived sea ice variables.more » « less
- 
            Abstract. Data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition allowed us to investigate the temporal dynamics of snowfall, snow accumulation and erosion in great detail for almost the whole accumulation season (November 2019 to May 2020). We computed cumulative snow water equivalent (SWE) over the sea ice based on snow depth and density retrievals from a SnowMicroPen and approximately weekly measured snow depths along fixed transect paths. We used the derived SWE from the snow cover to compare with precipitation sensors installed during MOSAiC. The data were also compared with ERA5 reanalysis snowfall rates for the drift track. We found an accumulated snow mass of 38 mm SWE between the end of October 2019 and end of April 2020. The initial SWE over first-year ice relative to second-year ice increased from 50 % to 90 % by end of the investigation period. Further, we found that the Vaisala Present Weather Detector 22, an optical precipitation sensor, and installed on a railing on the top deck of research vessel Polarstern, was least affected by blowing snow and showed good agreements with SWE retrievals along the transect. On the contrary, the OTT Pluvio2 pluviometer and the OTT Parsivel2 laser disdrometer were largely affected by wind and blowing snow, leading to too high measured precipitation rates. These are largely reduced when eliminating drifting snow periods in the comparison. ERA5 reveals good timing of the snowfall events and good agreement with ground measurements with an overestimation tendency. Retrieved snowfall from the ship-based Ka-band ARM zenith radar shows good agreements with SWE of the snow cover and differences comparable to those of ERA5. Based on the results, we suggest the Ka-band radar-derived snowfall as an upper limit and the present weather detector on RV Polarstern as a lower limit of a cumulative snowfall range. Based on these findings, we suggest a cumulative snowfall of 72 to 107 mm and a precipitation mass loss of the snow cover due to erosion and sublimation as between 47 % and 68 %, for the time period between 31 October 2019 and 26 April 2020. Extending this period beyond available snow cover measurements, we suggest a cumulative snowfall of 98–114 mm.more » « less
- 
            This dataset contains broadband albedo measurements made on the sea ice surface from approximately 1-meter (m) elevation during April – September 2020 as part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the Central Arctic Ocean. Measurements were made in three modes: (i) along ‘albedo lines’, between 60-200 meters (m) in length, with measurements every 5 meters (or 10 meters on leg 3), (ii) at specific ‘library sites,’ or (iii) ‘experiments’. Albedo lines were chosen with the aim of crossing representative surface conditions during the summer sea ice evolution, including snow-covered ridges, bare ice, and ponded ice. Included in the dataset are classification of the surface cover and depth for most measurements. Broadband albedo data was collected using a Kipp and Zonen albedometer. This dataset is collocated with the spectral albedo dataset (doi.org/10.18739/A2FT8DK8Z) and albedo photo dataset (doi.org/10.18739/A2B27PS3N).more » « less
- 
            This dataset contains spectral albedo data recorded on the sea ice surface June-September, 2020, during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition expedition in the Central Arctic Ocean. Measurements were made in three modes: (i) along ‘albedo lines’, between 60-200 meters (m) in length, with measurements every 5 meters, (ii) at specific ‘library sites,’ or (iii) ‘experiments’. Albedo lines were chosen with the aim of crossing representative surface conditions during the summer sea ice evolution, including snow-covered ridges, bare ice, and ponded ice. Included in the dataset are classification of the surface cover and depth for most measurements. Spectral albedo data was collected using an Analytical Spectral Devices (ASD) FieldSpec Pro spectroradio meter with a custom spectralon cosine collector. Incident and reflected values were recorded subsequently, with 10 scans averaged for each.Processing of the data includes calculating an albedo from the relative values of incident and reflected scans, and completing quality control to (i) correct for parabolic offset between sensors, (ii) add flag quantifying variability of incident light that may be used to filter scans, (iii) remove scans with physically unrealistic values or slopes, and (iv) remove and filter noisy parts of the spectrum. This dataset is collocated with the broadband albedo dataset (doi.org/10.18739/A2KK94D36) and albedo photo dataset (doi.org/10.18739/A2B27PS3N).more » « less
- 
            This dataset contains the corresponding photos of the albedo data recorded on the sea ice surface June-September, 2020, during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition expedition in the Central Arctic Ocean. The corresponding measurements were made in three modes: (i) along ‘albedo lines’, between 60-200 meters (m) in length, with measurements every 5 meters (or 10 meters on leg 3), (ii) at specific ‘library sites,’ or (iii) ‘experiments’. Albedo lines were chosen with the aim of crossing representative surface conditions during the summer sea ice evolution, including snow-covered ridges, bare ice, and ponded ice. Included in the dataset are classification of the surface cover and depth for most measurements. This dataset is collocated with the spectral albedo dataset (doi.org/10.18739/A2FT8DK8Z) and broadband albedo dataset (doi.org/10.18739/A2KK94D36).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
